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FULLY NONPARAMETRIC EMPIRICAL BAYES ESTIMATION

VIA PROJECTION PURSUIT

M. Vernon Johns

Departmeut of Statistics, Stanford University

(Dedicated to Herbert Robbins on his 70th birthday)

- The fully nonparametric formulation of the empirical Bayes estimation problem con-

siders m populations characterized by conditional (sampling) distributions chosen indepen-

dently by some unspecified random mechanism. No parametric constraints are imposed

on the family of possible sampling distributions or on the prior mechanism which selects

them. The quantity to be estimated subject to squared-error loss for each population is

defined by a functional T(F) where F is the population sampling cdf. The empirical Bayes

estimator ;s based on n lid observations from each population where n > 1. Asymptotically

optimal proceures for this problem typically employ consistent nonparametric estimators

of certain nonlinear conditional expectation functions. In this study a particular projec-

tion pursuit algorithm is used for this purpose. The proposed method is applied to the

estimation of population means for several simulated data sets and one familiar real world

data set. Certain possible extensions are discussed. .. ; ".k' ' -
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1. Introduction.

The purpose of this paper is to show how an old idea may be effectively implemented

using new technology. The old idea is the notion of fully nonparametric empirical Bayes

estimation, which was introduced by the author in a paper (Johns 1957) directly inspired by

the fundamental paper of Robbins (1955). The new technique is computer based projection

pursuit regression analysis.

The fully nonparametric approach to empirical Bayes estimation differs from the origi-

nal Robbins formulation in that it does not require the specification of a parametric family

for the conditional (sampling) distributions of the independent component populations.

• .- Neither formulation makes parametric assumptions about the prior distribution of the

quantity being estimated. This is in contrast to the case of 6parametric" empirical Bays

estimation (see e.g., Efron-Morris, 1975) where parametric models are specified for both

the conditional and prior distributions, and the "restricted" case where the estimators are

constrained to have particular simple form (see Robbins 1983). It should be noted that

the fully nonparametric version of the problem requires that at least two observations be

obtained from each component population.

When the empirical Bayes approach was first introduced, and for some time there-

after, it seemed that application of the methods to real world data would not often be

feasible because of computational difficulties and the possibility that a very large number

of component populations might be needed before approximately optimal results could be

obtained. Indeed, one advantage of the parametric approach, or the restriction to linear

forms of estimation, is the increased capacity to deal with real data sets of modest size at

the cost of some potential loss of asymptotic efficiency. The original version of the fully

* nonparanetric methodology (Johns, 1957) with which this paper is principally concerned,

-'. was of little practical use in a world where large scale digital computers had barely appeared

.O on the scene. Fortunately, the present widespread availability of computational power and

the development of sophisticated statistical software has opened up new possibilities.

One of the central requirements for dealing with the fully nonparametric empirical

*Bayes problem is the estimation of a conditional expectation function of unknown form

involving several variables. In the original paper (Johns, 1957) a pointwise consistent
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estimator was proposed based on successive refinements of a partition of d-dimensional

space. A convergence result (Lemma 5), which in a later incarnation has become known

as the generalized Lebesgue dominated convergence theorem, was then used to show con-

vergence to the Bayes optimal risk for the proposed empirical Bayes estimator. Some of

these results could be regarded as primitive precursors of the more recent work of Stone

(1981). In the last few years several other sophisticated methods for the nonparametric

estimation of conditional expectation (regression) have been proposed. These include ker-

nal smoothers, nearest neighbor estimates, recursive partitioning, and, notably, projection

pursuit regression as proposed by Friedman and Stuetzle (1981). A comprehensive dis-

cussion of projection pursuit methods may be found in Huber (1985) where it is noted

that, almost alone amoung multivariate procedures, they avoid many cf the difficulties

associated with high dimensionality and the presence of uninformative observations.

In the present study the regression aspect of the fully nonparametric empirical Bayes

estimation procedure has been dealt with by substituting a projection pursuit regression

scheme for the original conditional expectation estimator. The particular algorithm used

is called The Smooth Multiple Additive Regression Technique (SMART) and is detailed

in Friedman (1984). In section 2 the problem and the proposed solution are described

more formally. In section 3 the proposed method is applied to several data sets gener-

ated by computer simulation and the results are discussed. The method is also applied

to the famous Efron-Morris baseball data. Section 4 contains concluding remarks and

acknowledgements.

2. The Problem and the Proposed Method.

We consider m populations from each of which n observations are obtained. Let these

obser ations be given by

Xi= the ith observation from the "th population,

i=l, 2, ... ,n; j=1,2,...,m.

We assume that for each j the X-i's are iid with common random cdf F-, where

F1 , F2 , ... , Fn are a.ssumed to be selected independently according to some unknow prior

3

S " e T " -" - - " - ",- ".-. ' . °.- -" ,' ' ' ' ' . . - " ' '. ', ; " .°,-"



probability measure over all cdf's. Let T(F) = a real-valued functional defined on all

cdf's which represents the "parameter" to be estimated for each population subject to

squared-error loss, i.e., 0j = T(Fi), and for any estimator 0i the loss incurred is ( i -
0 -(01, 02...,0m) aid -(O1, 02, ..., m) then the average loss for the m component

populations is

L(&, 0) = 0- )(0 - 0)'/m.

The corresponding average risk is then

(2) R(O) =E{..(,O),

where the expectation operator E reflects the randomness in the selection of the Fj's as

well as the Xiis. Initially, we consider functionals of the form

(3) T(F) = EF{h(X)},

where h(.) is a specified function and X has cdf F. For example, if the quantity we wish

to estimate is the mean of F we would set

T(F) = z dF(z).

In section 4 we indicate a method for dealing with more general functionals.
We observe that for each j, the Bayes optimal istimate of 0i = T(Fi) under squared-

error loss is

Oi = E{OilXi,1 < i < n}.

If the observation Xk.j is omitted from the data for the jth population for some k, .< k <

n, then the corresponding Bayes escimator for 0, is

.=(k) E{OIlXq, I < i < n,i $ k},

= E{E{h(X,)IF}IX,,, I < i < n, i # k)},

(4) = E{h(Xk,)IXi,I < i < n,i # k},
J#( ,,,< i < n, i #k).
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where 0 is a fixed symmetric function of n - I arguments independent of j and k. Since 0 S_

a conditional expectation function, it may be estimated using any suitable nonparemetric

regression method applied to the data from all m populations. To make maximum use of

the information available for the estimation of 4, we may organize the mn observations as

follows: _-_

"Dependent' 6Independent3

h(X 1,) X21, X31, , -,

h(X21) XII, X31,...,X I .L

h(X l) X I, X21, ... ,X -,,

h(X 12 ) X 22 , X 32 , ... ,Xn2

(h(Xm) Xim, X2m, ... ,Xn-,m

Because of the symmetry of the function 0 we should increase this !ist by including all

permutations of the "independent' values, but this may be avoided by first ordering the

observations from each population so that Xi : _ ... < X, for each j. This, of

course, leads to a different (nonsymmetric) regression function, say V), which is defined

only for ordered arguments but contains the same information as 4. Henceforth, we shall

assume that the AXis are ordered in this fashion. If m represents a suitable nonparametric

regression estimate of b based on the available data, then the proposed empirical Bayes

estimator of 0. is

(6), Oj,.(x j, I <i < n,i 6 k),*(6) =

k=1

for j = 1,2, . . ., m. The averaging over n values of b indicated in (6) results in a slight

improvement in the performance of the estimator (see (2.47), p.6 5 6 of Johns, 1957).

The original formulation of the fully nonparametric empirical Bayes estimation prob-

lem considered the component problems in sequence and concentrated on the risk for the
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.,nth problem using the estimated conditional expectation based on the data from the pre-

vious m - 1 problems. Strictly speaking, the original asymptotic optimality result applies

to the present case only if we modify the procedure indicated above so that for each j the

estimate of 0 involves only data from the other m - 1 component problems. Then, for the

modified procedure and the original partition estimate of 0t, if we let B be the vector of

Oi's given by (6) the following result holds:

THEOREM (Johns, 1957) If E{h 2 (X)} < c,-), then

(7) R* < n Rn(d)< R-]

where R. = the Bayes optimal risk for a component problem with sample size n, and

RP(i) is the average risk using the empirical Bayes estimator i where the sample size is n

for earh component problem.

The modified procedure is too cumbersome for application to actual data since it

entails repeated estimation of the function ,b. It seems plausible that (7) will hold for the

unmodified procedure based on any well behaved estimator of the function ' for which the

pointwise convergence in probability to 0 as m becomes large is asymptotically unaffected

by the values of the Xij's for any fixed j.

In applications, if n is large and m is not very large, the estimate of 0,n may be unstable

and it may be desirable to substitute a summary statistic of lower dimension for the n - 1

arguments of ,P. If this summary statistic is well chosen the resulting loss of asymptotic

efficiency may be slight. One possibility would be to replace the conditioning X1 -'s by a

two dimensional statistic consisting of robust estimators of location and scale. In some of

the examples considered in the present paper, a less drastic reduction in dimension has

been obtained by replacing the n - 1 ordered Xi,, by d averages of s successive ordered

values where da = n - 1. It may be shown (see, e.g., Johns 1974) that such averages

of blocks of order statistics retain most of the sample information about the underlying

distribution.

As was mentioned in the introduction, the method used to estimate the required

conditional expectation in the present study is the SMART algorithm of fyiedman (1984).

Given a number of iid observations of a dependent variable Y and the ccrresponding values
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of "independent" variables Xi, X 2 , ..., X,, the algorithm estimates E{Y XI, X 2 ,..., Xp}

nonparametrically by an expression of the form

where X = (XI,X 2 ,...,Xp) and a = (a,a 2 ,...,ap). The ai's, and the functions fr 0 are

suitably normalized to avoid identifiability difficulties. The ai's, fir's, f, 0's and number

of terms in (8) are chosen to satisfy a least squares criterion, where the functions are

generated by a variable span smoother.

3. Examples.

The proposed nonparametric empirical Bayes estimation procedure incorporating the

SMART algorithm as implemented on a VAXIl/750 computer was applied to six sets of

simulated data and one set of real data. For each example, the quantities being estimated

( i.e., the Oi's) are the means of the component populations. The simulated data sets

consist in each case of either 50 or 100 component populations. These numbers are perhaps

larger than would be expected in some applications to real world data but were chosen

to yield reasonably stable and interpretable results. The sample sizes associated with the

component problems are 5 or 6 for the 103 component cases and 11 for the 50 component

cases.

The conditional distributions are either normad with mean = 0 and standard deviation

= a, or logistic with mean = 9 and scale = o. The prior distributions for 0 are either

normal with mean = p and standard deviation = r, or the longtailed distribution having

density

(9) g(O) =
,r(i + 04)

This distribution has mean = 0 and standard deviation = 1. For two examples the scale

parameter a for the conditional distribution was chosen randomly from three possible

values. The summary statistic on which the predicted values of 0 are based is either all

n - 1 available observations or, for n = 11, the set of five averages of two adjacent order

7
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statistics. The setup for each of the six cases simulated is given in Table 1.

TABLE 1

Cases Simulated

Case Conditional Prior No.of Sample Prior Prior Cond. Summary

Label Distr. Distr. Pops. Size Mean S.D. Scale* Statist.
(for 0) Wm (n) (is) (W- (ar)

(a) Normal Normal 100 5 25 2 2,4,6 all 4 obs.

(b) Normal Normal 100 5 25 2 4 all 4 obs.

(c) Normal Normal 50 11 25 2 6 5 avgs.

(d) Normal Longtail 100 5 0 1 2 all 4 obs.

(e) Logistic Normal 100 6 0 2 3 all 5 obs.

f) Logistic Longtail 50 11 0 1 4,5,6 5 avgs.

* Each value has equal prior probability and is independent of 0.

TABLE 2

Summary of the Simulation Results

Case Conditional Prior Bayes Asymptotic Observed Observed

Label Distr. Distr. Opt. Risk BLUE M.S.E. BLUE M.S.E. EB M.S.E.

(for 0) (Approx.)

(a) Normal Normal* 1.67 3.73 4.29 1.98

(b) Normal Normal 1.78 3.20 3.32 1.57

(c) Normal Normal 1.80 3.27 3.38 2.58

(d) Normal Longtail 0.44 0.80 0.69 0.45

(e) Logistic Normal 2.12 4.50 4.50 2.69

(f) Logistic Longtail* 0.86 7.00 6.98 3.40

* The values of sigma are selected randomly from among three values.

The numerical results obtained from the six simulations are summarized in Table 2.

The last column shows the actual mean squared error (M.S.E.) produced by the fully



nonparametric empirical Bayes procedure. For comparison purposes both the average ob-

served variances and the true (asymptotic) variances for the best linear unbiased estimators

(BLUE's) are shown. For the normal cases, of course, the BLUE is simply the sample mean.

Approximate values for the Bayes optimal risk are also given. These are based on linear

Bayes estimators and asymptotic variances so they are only exact for cases (b) and (c)

where both the conditional and the prior distributions are normal. It is encouraging to

note that the empirical Bayes M.S.E. is substantially smaller than the BLUE variance for

each of the examples. Furthermore, the empirical Bayes M.S.E. is in the vicinity of the

Bayes optimal risk for all cases but one (example (f)).

The actual regression functions produced by the SMART algorithm are plotted in

Figures 1 and 2. In all cases the algorithm concluded that only a single function fi was

required in expression (7) for an adequate description of the data. When interpreting the

plots it should be borne in mind that a different direction vector a is associated with each

function. The vector X represents the appropriate set of "independent" variables.

FIGURE 1

SMART Regression Functions
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FIGURE 2

SMART Regression Functions
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We observe that the plots are quite linear for all cases with normal conditional dis-

tributions but distinctly nonlinear for the logistic cases. It was thought that example (a)

might yield a nonlinear regression because of the random prior on a. A numerical calcu-

lation of the actual conditional expectation of the mean given the sample mean and the

sample variance verified that the regression surface was in fact fairly linear. A plot of this

surface evaluated at a set of grid points is shown in Figure 3.

An actual real world data set was also analyzed using the fully nonparametric em-

pirical Bayes scheme. ThLe data was obtained from Efron-Morris (1975) and consists of

the batting averages for 18 major league baseball players for their first 45 times at bat

and their averages for the remainder of the season which represent the 'true' values one

wishes to predict. Efron-Morris first transform the data to approximate normality using

the arcsine transformation. They then compute the Stein estimator (Stein, 1955) and their

own proposed estimator based on a linear empirical Bayes formula modified to limit the

maximum component risk. The results are then converted back to proportions. For the

present study the data was considered in its original form as a set of Bernoulli observations

10



FIGURE 3

Conditional Mean w
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(hits or non-hits) and the fully nonparametric empirical Bayes method was applied. The

results are shown in Table 3. The third column gives the maximum likelihood estimate

(MLE) which is just the observed proportion of hits in the first 45 at bats. The nonpara-

metric empirical Bayes estimate is given in the fourth column and Stein's estimate in the

fifth. The Efron-Morris limited risk estimate with index .8 is given in the last column.

The corresponding mean squared errors of prediction are shown in the last row.

44 4



TABLE 3

Batting Averages and Their Estimates

i 'TRUE' MLE NP-EB STEIN EMEST(.8)

1 .346 .400 .306 .290 .351

2 .298 .378 .293 .286 .329

3 .276 .356 .281 .281 .308

4 .222 .333 .269 .277 .287

5 .273 .311 .256 .273 .273

6 .270 .311 .256 .273 .273

7 .263 .289 .247 .268 .268

8 .210 .267 .247 .264 .264

9 .269 .244 .254 .259 .259

10 .230 .244 .254 .259 .250

11 .264 .222 .258 .254 .254

12 .256 .222 .258 .254 .254
13 .303 .222 .258 .254 .254

14 .264 .222 .258 .254 .254
14 .226 .222 .258 .254 .254

16 .285 .200 .266 .249 .242

17 .316 .178 .274 .244 .218

18 .200 .156 .283 .239 .194

M.S.E. .00419 .00105 .00120 .00139

We observe that the procedure proposed in this study has the smallest mean squared

error of prediction and does better than the Efron-Morris estimator in three out of the

five cases (i = 1, 2,3,17, 18) where their procedure limits the risk. The highly nonlinear

regression function which SMART produces for this case is plotted in Figure 4. The

abscissa of this figure is a linear function of the number of hits in 44 at bats.

12
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FIGURE 4

SMART Regression Function
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4. Concluding Remarks.

The estimation procedures discussed here may be modified and generalized in various

ways. We may expect that ever more sophisticated nonparametric regression methods will

be developed. Such procedures may then be substituted for the projection pursuit part

of the scheme. The empirical Bayes problem described here assumes equal sample sizes

for all component populations. The case of unequal sample sizes may be dealt with by

various ad hoc methods some of which are discussed in the original paper (Johns, 1957).

'The question of the best way to proceed in such cases is still open.

In the preceding sections the quantities to be estimated were required to be represented

as functionals of the form (3). However, within this framework we may estimate the
conditional cdf F(t) for any fixed t by letting h(z) = the indicator function of the interval

(-oo, t]. Since F(t) can be recaptured, it should be possible modify the procedure to

13
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permit the estimation other functionals T(F) such as, e.g., the median of F.

As is true of most empirical Bayes problems, the present one may be reinterpreted

as a compound decision problem by dropping the assumption of the existence of a prior

probability distribution, and replz.cing it with a suitable empirical distribution of unknown

quantities. In the present case these quantities are the component cdf's FI,F2, ..., F".

Presumably results paralleling the empirical Bayes results would be forthcoming here as

in previously considered problems. (See Robbins (1951) for the original formulation of the
key ideas and Gilliland (1968) and Johns (1967) for some further developments.)

The SMART algorithm used in the applications considered in this study requires the

specification of certain operating parameters. The most significant of these was found to

be the span parameter controlling the variable span smoother. This was assigned a value

of either 0.6 or 0.7 for all of the examples considered.

Finally, the author wishes to express his thanks to David J. Pasta who rendered

invaluable assistance in the application of the SMART algorithm to the data of this study.
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